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1. Introduction

It is common knowledge that the unitarity method, introduced in [1, 2] and further de-

veloped in [3], proved itself to be a powerful as well as elegant tool for computing loop

scattering amplitudes (see [4] and references therein for a comprehensive review). In fact,

recent years have witnessed impressive achievements in the calculation of two- and higher-

loop scattering amplitudes with much of the effort mostly focused on the maximally su-

persymmetric N = 4 Yang-Mills theory (MSYM) [5 – 8]. This is primarily due to the

simplicity of the perturbative expansion in the ’t Hooft (planar) limit of MYSM suggested

by an intriguing duality that relates MSYM at strong coupling to weakly-coupled gravity

on AdS5 × S5 [9]. A short while ago, this duality was exploited as a different manner to

compute amplitudes in MSYM [10] and in the case of four-gluon amplitudes agreement

was found with an all-loop order ansatz put forward in [6].

In this letter, we focus on one-loop maximally helicity violating (MHV) amplitudes

in pure Yang-Mills theory. These amplitudes are of particular interest as they constitute

an example of one-loop n-point scattering amplitudes in QCD, where both external and

internal particles are gluons. In pure Yang-Mills the n-gluon one-loop amplitudes may be

decomposed as

An
gluon = An

N=4 − 4An
chiral,N=1 + An

scalar . (1.1)

Although each contribution of (1.1) has been computed for the case of MHV amplitudes

using the unitarity method [1, 2], the MHV diagram approach [11 – 14] and, to some extent,
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generalised unitarity [15, 16], an explicit double-check of the last term of (1.1), namely the

contribution arising from a complex scalar particle running in the loop, is still lacking for

the case of MHV amplitudes with non-adjacent negative-helicity gluons.1 As we felt obliged

to do so, we aim in this letter to rederive the cut-constructible scalar contribution to the

n-gluon MHV amplitude by means of the generalised unitarity method [17, 18, 3, 15].

At one loop, generalised unitarity instructs us to cut the amplitude into a product

of up to four on-shell tree amplitudes and to replace the propagators connecting the sub-

amplitudes by on-shell δ-functions,2 which put the internal particles on shell. When four

propagators are cut (quadruple cut) the momentum integral is completely frozen and the re-

sulting product of four tree-amplitudes3 can be identified directly with coefficients of scalar

box functions [15]. One route to obtain the coefficients for the remaining scalar triangle

and bubble functions is to use triple cuts and conventional two-particle cuts. An efficient

method to extract directly, individual coefficients of specific scalar integral functions using

a convenient parametrisation for the cut momenta was presented recently in [26].

For the extraction of triangle and bubble coefficients we want to follow a slightly

different approach [16, 24]. Here one considers the triple cut of a one-loop amplitude, which

in general has contributions from triangle and box functions. One can in principle subtract

off the box contributions using quadruple cuts but strictly speaking this is not needed. The

three delta functions do not completely freeze the loop integration, hence we simplify the

integrand as much as possible using the three loop momentum constraints where the loop

momenta are allowed to take complex values. In the final step the cut integral is lifted

back up to a loop integral by replacing the on-shell delta functions by the corresponding

propagators. The result contains terms that have the correct cuts in the channel under

consideration, and possibly terms with cuts in other channels; the latter terms can be

dropped. Considering all possible cuts should then give the complete amplitude. An

important comment is in order here. The procedure outlined above also produces linear

triangle integral functions (triangle integrals with one loop momentum in the numerator),

which, as is well known, can be written as linear combinations of scalar triangle and bubble

integrals. Therefore, this method can also produce bubble functions which a priori would

require the use of additional two-particle cuts. At this point we do not have a proof that

two-particle cuts can be avoided for general amplitudes, but for the examples considered

in [16, 24] and in this letter this method produces the correct answers. The examples include

the Next-to-MHV one-loop amplitudes with adjacent negative helicity gluons considered

in [16], all four-point one-loop amplitudes in pure Yang-Mills considered in [24] and the

MHV one-loop amplitudes considered in this letter. Obviously, it would be interesting to

study this observation in more detail.

1So far that term has only been calculated using MHV diagrams in [13], while the special case of adjacent

negative helicity gluons was first found in [2].
2Since the solutions of the momentum constraints can be complex in general we replace a cut propagator

by δ(l2i ) and not by δ(+)(l2i ). Also in the subsequent manipulations of the integrands we allow the loop

momenta to be complex.
3To be more precise, in general the result is a weighted sum over the two complex solutions of the

momentum constraints.
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In this paper we focus on the rederivation of the cut-constructible parts of MHV one-

loop amplitudes by considering a complex scalar running in the loop. In the case that both

negative helicity gluons are adjacent all quadruple cuts vanish and, hence, the answer does

not contain box functions. In the case that the negative helicity gluons are not adjacent

box functions do contribute and can be determined either directly using quadruple cuts

(see [16]) or with the triple cut method outlined above. As a consistency check we have

also considered the quadruple cuts in section 3. Therefore, in the following discussion we

will concentrate on the triple cuts, which in the case at hand allow us to determine the full

cut-constructible part of this class of amplitudes. Explicitly, the non-vanishing triple cuts

of the scalar loop contribution to the n-gluon MHV amplitude (see figure 2) take the form:

An
scalar

∣

∣

∣

cut
=

∑

±

∫

d4ℓ1 d4ℓ2 d4ℓ3 δ(ℓ2
1) δ(ℓ2

2) δ(ℓ2
3) δ4(ℓ3 − ℓ1 − Q)δ4(ℓ1 − ℓ2 − P ) (1.2)

×Atree(ℓ1, (m2+1), . . . , j−, . . . ,−ℓ2)Atree(ℓ2,m1,−ℓ3)

×Atree(ℓ3, . . . , i
−, . . . ,m2,−ℓ1) ,

where the allowed values of m1 and m2 are

j + 1 ≤ m1 ≤ i − 1, i + 1 ≤ m2 ≤ j − 1 . (1.3)

The tree amplitudes entering the integrand involve two MHV amplitudes with two scalars

and one anti-MHV three-point amplitude with two scalars. The ± in (1.2) refers to the fact

that we have a complex scalar running in the loop. Thus, there are two possible helicity

configurations, each of which gives rise to the same integrand.

On general grounds, four-dimensional cuts alone suffice to reconstruct the full ampli-

tudes in supersymmetric theories at one loop [1, 2]. However, in theories not protected

by supersymmetry, there are additional rational terms which cannot be detected by cuts,

unless one decides to work in D = 4 − 2ǫ dimensions and keep higher orders in ǫ, so that

even rational terms develop discontinuities which can be detected by the unitarity method.

An example of such an amplitude is the one-loop four-gluon + + + + amplitude with a

complex scalar running in the loop. This amplitude consists of purely rational terms and

it was first computed in [19] using a technique based on the technology of four-dimensional

heterotic string theory. It was subsequently confirmed and extended to the case of an arbi-

trary number of positive helicity gluons in [20, 21] and to the case when one of the gluons

has opposite helicity from the others [20]. Furthermore, the + + + + one-loop amplitude

was recalculated in [22] by means of two-particle cuts in D = 4 − 2ǫ dimensions, in [23]

where a relationship between one-loop MHV gluon amplitudes of QCD and those of N = 4

SYM was put forward and in [24] using the generalised unitarity method in D = 4 − 2ǫ

dimensions. More recently, there has been a proposal [25] in which it was argued that

in a particular regularisation scheme certain Lorentz-violating counterterms provide these

missing rational terms. We wish to make it clear that in this letter we shall only work with

unitarity cuts in D = 4 dimensions, thus considering only the cut-constructible part of

the n-gluon MHV amplitude. Hence, all the (cut) loop momenta in this letter are kept in

four dimensions until the amplitude has been expressed as a linear combination of integral
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Figure 1: The three-particle cut diagram contributing to the n-gluon amplitude in the case of

adjacent negative-helicity gluons.

functions. Only at this stage the dimensional regularisation parameter ǫ is introduced to

regularise the divergences of the integral functions.

The cut-constructible part of the MHV one-loop amplitudes in pure Yang-Mills for the

special case of adjacent negative helicity gluons has already been calculated in [2] using

unitarity whereas the general helicity configuration was dealt with in [13] by means of

the MHV diagram method. Note that the rational parts of these amplitudes have been

computed analytically in [27, 28] using the powerful method of on-shell recursion relations.

The purpose of this letter is to show how generalised unitarity correctly reproduces the cut-

constructible parts of the n-gluon amplitudes with less effort than conventional two-particle

cuts or the MHV diagram method. We discuss the adjacent negative-helicity case in the

next section and the general case in section 3. In section 4 we present our conclusions.

2. MHV one-loop amplitudes: adjacent negative-helicity gluons

In this section we show how generalised unitarity may be used to compute the n-point MHV

one-loop amplitude in pure Yang-Mills for the case of adjacent negative-helicity gluons.

Let us consider the triple-cut diagram depicted in figure 1, where we choose all mo-

menta to be outgoing. There are two such diagrams, which are obtained by flipping all

the internal helicities of the scalar particles running in the loop. Without loss of generality

we set i = 1 and j = 2 throughout this section. Note that in this case the range of m is

3 ≤ m ≤ n. Furthermore, in the adjacent case all quadruple cuts vanish and, hence, no

box functions appear in the amplitude.

The triple cut4 of the n-point amplitude is obtained by sewing three tree-level ampli-

tudes. Ignoring factors of i and 2π, the product of the tree amplitudes appearing in the

4For a short summary of conventions, see the appendices.
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triple cut (1.2) is

[mℓ2][mℓ3]

[ℓ2ℓ3]
×

〈1ℓ1〉
2〈1ℓ3〉

2

〈(m + 1)(m + 2)〉 . . . 〈n1〉〈1ℓ1〉〈ℓ1ℓ3〉〈ℓ3(m + 1)〉
×

〈2ℓ1〉
2〈2ℓ2〉

2

〈23〉 . . . 〈(m − 2)(m − 1)〉〈(m − 1)ℓ2〉〈ℓ2ℓ1〉〈ℓ12〉
. (2.1)

Thus (1.2) together with (2.1) gives

An
scalar

∣

∣

∣

cut

= 2iAtree

∫

d4ℓ2
∏3

i=1 δ(l2i )

(2π)4
〈2 ℓ2〉

2 〈ℓ1 2〉 〈1 ℓ1〉 〈1 ℓ3〉
2 〈(m − 1)m〉 〈m(m + 1)〉[m ℓ2] [ℓ3 m]

〈1 2〉3 〈(m − 1) ℓ2〉 〈ℓ2 ℓ1〉 〈ℓ3 (m + 1)〉 〈ℓ1 ℓ3〉 [ℓ2 ℓ3]

= 2iAtree

∫

d4ℓ2

(2π)4
〈2

∣

∣ℓ2

∣

∣m] 〈1m〉 〈1
∣

∣Pℓ2

∣

∣2〉 〈2
∣

∣Pℓ2

∣

∣1〉 [1 2]3

25 (1 · 2)3 (ℓ1 · ℓ2)2 ℓ2
1 ℓ2

2 ℓ2
3

∣

∣

∣

cut
, (2.2)

where in the second line of (2.2) we have factored out the MHV tree level amplitude and

cancelled certain spinor brackets in the numerator and denominator of (2.1). In order

to arrive at the last line of (2.2) we have used the fact that the holomorphic spinors of

the momenta appearing in the anti-MHV three-point amplitude are proportional to each

other, i.e. λm ∝ λℓ2 ∝ λℓ3. The factor of two accounts for the fact that we have already

summed over the two possible internal helicities. Finally, the δ-functions have been replaced

by full propagators and the three-particle phase-space integral has been promoted to an

unrestricted loop integral. The symbol |cut indicates that this replacement is only valid in

the channel defined by a given triple-cut.

Let us clarify some notations. We define the general external momenta kp as kp := p.

Also, we define

P := qj,m−1, Q := qm+1,i , (2.3)

where qpi,pj
:=

∑pj

l=pi
kl. We set i = 1 and j = 2 for the adjacent case.

Converting (2.2) into Dirac traces yields the following integrand:

tr+(61 62 6P 6ℓ2) tr+(61 62 6ℓ2 6m) tr+(62 61 6ℓ2 6P )

25 (1 · 2)3 (ℓ1 · ℓ2)2
. (2.4)

Thus, the task reduces to computing the three-index tensor integral

Iµνρ(m,P,Q) =

∫

d4ℓ2

(2π)4
ℓµ
2 ℓν

2 ℓρ
2

ℓ2
1 ℓ2

2 ℓ2
3

, (2.5)

which may be done by standard Passarino-Veltman (PV) integral reduction [29]. Details

of the calculation can be found in appendix B.

The result of the PV reduction has to be inserted into (2.1). Doing so yields a series

of terms of which, after some manipulations, only the following two remain:

A1 = −
Atree

(t
[2]
1 )2

1

6

[

I2(P
2) − I2(Q

2)
]

(Q2 − P 2)2
(1 2Qm)2 , (2.6)
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A2 =
Atree

(t
[3]
1 )3

1

3

[

I2(P
2) − I2(Q

2)
]

(Q2 − P 2)3
(1 2Qm)2(1 2m Q) , (2.7)

where t
[k]
i := (pi + pi+1 + · · · + pi+k−1)

2 are sums of color-adjacent momenta and the I2

functions are the scalar bubble functions as defined in appendix A. In obtaining (2.6) and

(2.7), we made use of the fact that momentum conservation dictates that on the triple-cut

(ℓ1 · ℓ2)
2 = 4/P 4 and (m · Q) = −(m · P ) = −(1/2)(Q2 − P 2). Also, in order to make the

formulas more compact, we introduced the notation (a1 a2 a3 a4) := tr+(6a1 6a2 6a3 6a4), which

we will use throughout the rest of the paper.

In (2.6) and (2.7) the combinations
[

I2(P
2) − I2(Q

2)
]

/((Q2 − P 2)(r)) appear, which

are ǫ-dependent triangle functions expressed as differences of two bubble functions (defined

in section A.1). For convenience we choose to write them as

T (r)
ǫ (m,P,Q) :=

1

ǫ

(−P 2)−ǫ − (−Q2)−ǫ

(Q2 − P 2)r
, (2.8)

where r is a positive integer and the momenta on which T (r) depends satisfy m+P +Q = 0.

As mentioned in the Introduction, we are working in D = 4 dimensions so that we

really should take the ǫ → 0 limit of (2.8). For P 2 6= 0 and Q2 6= 0 we define the finite,

ǫ-independent triangle function,

T (r)(m,P,Q) :=
log(Q2/P 2)

(Q2 − P 2)r
. (2.9)

In the event of the vanishing of either of the kinematic invariants, (2.8) gives rise to

infrared-divergent terms since one of the numerator terms in (2.8) vanishes. There are two

possibilities:

• P = k2 with P 2 = 0 ,

• Q = k1 with Q2 = 0 .

Finally, the amplitude takes the following form:

Ascalar
n = Apoles + A1 + A2 , (2.10)

where

Apoles = −
i

6
Atree

1

ǫ

[

(−t
[2]
2 )−ǫ + (−t[2]n )−ǫ

]

, (2.11)

A1 = −
2i

6
Atree

1

(t
[2]
1 )2

n−1
∑

m=4

[

(1 2P m)2
]

T (2)(m,P,Q) ,

A2 = −
2i

3
Atree

1

(t
[2]
1 )3

n−1
∑

m=4

[

(1 2P m)2(1 2m P )
]

T (3)(m,P,Q) ,

where we used t
[k]
i := (pi + pi+1 + · · · + pi+k−1)

2 and the triangle functions introduced

in (2.9).
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Equation (2.11),5 which gives the cut-constructible part of the n-point one-loop scat-

tering amplitudes with two adjacent gluons of negative helicity, agrees with the ampli-

tudes found in [2] using conventional unitarity and with the amplitude found in [13] using

MHV diagrams.

3. MHV one-loop amplitudes: non-adjacent negative-helicity gluons

The case in which the two negative-helicity gluons are non-adjacent is more involved.

Fortunately, the calculation turns out to be more straightforward than expected, since

some of the algebraic manipulations involved can be related to manipulations appearing in

the hMHV diagram calculation of the same amplitudes [13].

As in the adjacent case, our starting expression is (1.2). A direct, brute force calcu-

lation yields rather unpleasant four-tensor box integrals. However, we do not follow this

approach as it would spoil our goal to show the simplicity of the generalised unitarity

method. Instead, by using momentum conservation arguments to eliminate ℓ3 from (1.2),

we arrive at a more elegant and manageable expression for the amplitude given by

An
scalar

∣

∣

∣

cut
=−

2iAtree

〈i j〉4

∫

d4ℓ2

(2π)4
〈j ℓ1〉

2〈j ℓ2〉
2〈i ℓ1〉

2〈i ℓ2〉
2〈m2 (m2+1)〉〈(m1−1)m1〉[ℓ2 m1]

ℓ2
1 ℓ2

2 ℓ2
3 〈ℓ1 (m2+1)〉〈(m1−1) ℓ2〉〈m2 ℓ1〉〈ℓ1 ℓ2〉2

∣

∣

∣

cut
,

(3.1)

where in deriving (3.1) we made use of the fact that on the cut

λℓ2 = αλm1 , (3.2)

λℓ3 = β λm1 ,

λ̃ℓ2 =
1

α
λ̃m1 +

β

α
λ̃ℓ3 ,

for some complex α and β with λ and λ̃ holomorphic and antiholomorphic spinors of

negative and positive helicity respectively.

In order to reduce the hexagon integral (3.1) to a linear combination of box and triangle

integrals, we notice that multiplying and dividing (3.1) by 〈ℓ2 m1〉 allows us to write the

integrands,6 after applying the Schouten identity twice, as a sum of four terms

C(m2+1, m1) − C(m2+1, m1−1) − C(m2,m1) + C(m2,m1−1) , (3.3)

where

C(a, b) :=
〈j ℓ1〉

2〈j ℓ2〉〈i ℓ1〉〈i ℓ2〉
2

〈ℓ1 ℓ2〉2〈i j〉4
·

〈i a〉〈j b〉

〈ℓ1 a〉〈ℓ2 b〉
. (3.4)

5Notify that in the notation of [2, 13] qm,1 = −P . Also, we dropped an overall, ǫ-dependent factor

cΓ [2] and did not make the symmetry properties of the amplitude under the exchange of the gluons 1 ↔ 2

manifest in writing our result, thus explaining a factor of two compared to [2, 13].
6The reader might argue, in view of (3.2), that 〈ℓ2m1〉 is zero which entails that we are effectively

multiplying (3.1) by 0
0
. However, at this point we are off-shell as we have uplifted the cut integral to a

Feynman integral by replacing on-shell δ-functions by full Feynman propagators.

– 7 –
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Figure 2: One of the two possible triple cut diagrams contributing to the n-gluon amplitude in the

general case. The other triple cut diagram is obtained by swapping i and j through the replacements

m1 − 1 → m1 and m2 ↔ m1.

Therefore, we find

An
scalar

∣

∣

∣

cut
= 2iAtree

[∫

d4ℓ2

(2π)4
1

ℓ2
1 ℓ2

2

−

∫

d4ℓ2

(2π)4
1

ℓ2
1 ℓ2

3

]

∑

a,b

C(a, b)
∣

∣

∣

cut
, (3.5)

where the sum stands for the sum of four terms (with signs) in (3.3).

One of the triple cuts contributing to the amplitude may be seen in figure 2 where we

defined P := qm2+1,m1−1 and Q := qm1+1,m2 . Our choice for the momentum flow explains

why we find the C coefficients with a ↔ b compared to [13].

Although the calculation carried out in [13] is conceptually different from the one we

are performing here, we can nevertheless make use of formula (B.16) in that paper, which

gives a rather convenient expression for C:

−C(a, b) =
(i j ℓ1 ℓ2)(i j ℓ2 ℓ1)(i j ℓ1 a)(i j b ℓ2)

28(i · j)4(ℓ1 · ℓ2)2(ℓ1 · a)(ℓ2 · b)
(3.6)

=
1

28(i · j)4
(H1 + . . . + H4) ,

where the Hi are given by

H1 :=
(i j b a)(i j ℓl P )(i j P ℓ1)(i j ℓ1 a)

(ℓ1 · ℓ2)2(a · b)(ℓ1 · a)
(3.7)

−
(i j b a)(i j P ℓ2)(i j ℓ2 P )(i j ℓ2 b)

(ℓ1 · ℓ2)2(a · b)(ℓ2 · b)
,

H2 := −
(i j a b)(i j b a)(i j P ℓ1)(i j ℓ1 a)

(ℓ1 · ℓ2)(a · b)2(ℓ1 · a)
(3.8)

−
(i j a b)(i j b a)(i j ℓ2 P )(i j ℓ2 b)

(ℓ1 · ℓ2)(a · b)2(ℓ2 · b)
,

– 8 –
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H3 := −
(i j a b)2(i j b a)(i j ℓ1 a)

(a · b)3(ℓ1 · a)
(3.9)

+
(i j a b)2(i j b a)(ijℓ2b)

(a · b)3(ℓ2 · b)
,

H4 := −
(i j a b)2(i j b a)2(b P ℓ1 a)

4(a · b)4(ℓ1 · a)(ℓ2 · b)
. (3.10)

Thus, we produce, in ascending order, linear box integrals and linear, two-tensor and

three-tensor triangle integrals. We focus first on the triangle integral contributions.

Substituting for a and b in the expressions for H and keeping only those terms that

actually contribute to the particular triple cut depicted in figure 2 yields combinations of

differences of traces. In order to express our result in a more compact fashion, we find it

useful to define the following quantities:

Aij
m1m2

:=
(i j m1 m2+1)

(m1 · (m2+1))
−

(i j m1 m2)

(m1 · m2)
, (3.11)

Sij
m1m2

:=
(i j m1 m2+1)(i j m2+1m1)

(m1 · (m2+1))2
−

(i j m1 m2)(i j m2 m1)

(m1 · m2)
, (3.12)

Iij
m1m2

:=
(i j m1 m2+1)(i j m2+1m1)

2

(m1 · (m2 + 1))3
−

(i j m1 m2)(i j m2 m1)
2

(m1 · m2)3
, (3.13)

which exhibit the following symmetry properties

Aij
m1m2

= −Aji
m1m2

, Sij
m1m2

= Sji
m1m2

. (3.14)

The only integrals that survive from (3.5) are the ones with the correct triple cut, i.e.

those integrals that have all three propagators that are cut in figure 2. Hence, many of the

triangle integrals can be neglected7 and after the dust has settled we are left with:

H1 = Aij
m1m2

(i j P ℓ2)(i j ℓ2 P )(i j ℓ2 m1)

28(i · j)4(ℓ1 · ℓ2)2(ℓ2 · m1)
, (3.15)

H2 = Sij
m1m2

(i j ℓ2 P )(i j ℓ2 m1)

28(i · j)4(ℓ1 · ℓ2)(ℓ2 · m1)
, (3.16)

H3 = Iij
m1m2

(i j ℓ2 m1)

28(i · j)4(ℓ2 · m1)
. (3.17)

Before we present the complete amplitude, we wish to inspect the coefficient of the

box function depicted in figure 3 and compare it with the results found in [13] using MHV

diagrams and in [16] using quadruple cuts. The crucial term in the function C(a, b) that

enters the triple cut (3.5) of the amplitude and gives rise to a triple cut of a box function is:

−
1

28(i · j)4
H4 =

[

(i j m2 m1)
2(i j m1 m2)

2

28(i · j)4(m2 · m1)4

]

(m1 P ℓ1 m2)

4(l1 · m2)(l2 · m1)
, (3.18)

7One consequence of these considerations is that the first integral on the right hand side of (3.5) can be

ignored altogether.
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Figure 3: A box functions contributing to the n-gluon MHV amplitude in the general case.

which may be written more compactly as

−
1

28(i · j)4
H4 =

1

4

[

bij
m1m2

]2 (m1 P ℓ1 m2)

(l1 · m2)(l2 · m1)
, (3.19)

in terms of the coefficient of the box integral function appearing in the one-loop N = 1

MHV amplitude with the same helicity configuration computed in [2]

bij
m1m2

:= −
1

8

(i j m2 m1)(i j m1 m2)

(i · j)2 (m1 · m2)2
. (3.20)

Note that (3.19) gives rise to a linear two-mass easy box integral whose PV reduction has

been performed in appendix A.3. Inserting the result of this PV reduction into (3.19)

reproduces the correct coefficient of the box function. A brief comment is in order here. In

the final result [13] only the finite part B(s, t, P 2, Q2) of the two-mass easy box function

appears (as defined e.g. in eq. (4.7) of [13]). We have checked that this is indeed the case

and is due to the presence of scalar triangle functions in the PV reduction of appendix A.3

which precisely cancel the IR divergences of the scalar box function I4[1] once all triple-cut

channels are taken into account.

We can now present the complete result8 for the one-loop n-gluon MHV amplitude (1.2)

8We have already multiplied by a factor of 2 due to the two scalar helicity configurations running in the

loop
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reconstructed using the generalised unitarity method:

An
scalar = 2iAtree







i−1
∑

m1=j+1

j−1
∑

m2=i

1

2
[bij

m1m2
]2F

(

t[m2−m1]
m1

, t
[m2−m1−1]
m1+1 , P,Q

)

(3.21)

+





8

3

i−1
∑

m1=j+1

j−1
∑

m2=i

[

Aij
m1m2

T (3)(m1, P,Q)+(i·j)Ãij
m1m2

T (2)(m1, P,Q)
]

+ 2

i−1
∑

m1=j+1

j−1
∑

m2=i

[

Sij
m1m2

T (2)(m1, P,Q) − I ij
m1m2

T (m1, P,Q)
]

+ (i ↔ j)

)}

,

where we have introduced for convenience the following quantities:

Aij
m1m2

:= −2−8(i · j)−4 Aij
m1m2

[

(i j m1 Q)(i j Qm1)
2
]

, (3.22)

Ãij
m1m2

:= −2−8(i · j)−4 Aij
m1m2

[

(i j Qm1)
2
]

, (3.23)

Sij
m1m2

:= 2−8(i · j)−4 Sij
m1m2

[

(i j Qm1)
2
]

, (3.24)

I ij
m1m2

:= 2−8(i · j)−4 Iij
m1m2

[(i j Qm1)] . (3.25)

The amplitude (3.21) agrees precisely with the result found in [13]. Once again, in deriv-

ing (3.21) we did not make use of the symmetry properties of the amplitude under exchange

of the i-th and j-th gluon.

Similarly to the adjacent case, the infrared divergent terms may be extracted from

the cases when either P 2 or Q2 vanishes (see figure 2). The case Q2 = 0 corresponds to

m1 = i−1 and m2 = i, while P 2 = 0 corresponds to m1 = j+1 and m2 = j−1. Hence,

T (r)(p, P,Q) → (−)r
1

ǫ

(−t
[2]
i−1)

−ǫ

(t
[2]
i−1)

r
, Q2 → 0 , (3.26)

T (r)(p, P,Q) → −
1

ǫ

(−t
[2]
j )−ǫ

(t
[2]
j )r

, P 2 → 0 . (3.27)

Thus, we find the following infrared-divergent terms for Q2 = 0:

−
1

2 ǫ
· (−t

[2]
i−1)

−ǫ4(i · j)
(i j i−1 i+1)

((i+1) · (i−1))
(3.28)

·

[

8

3
(i · j)2 − 2

(i j i+1 i−1)

((i+1) · (i−1))(i · j)
+

(i j i+1 i−1)(i j i−1 i+1)

((i+1) · (i−1))2

]

.

Similarly, we find for P 2 = 0 the following:

−
1

2 ǫ
· (−t

[2]
j )−ǫ4(i · j)

(i j j−1 j+1)

((j+1) · (j−1))
(3.29)

·

[

8

3
(i · j)2 − 2

(i j j+1 j−1)

((j+1) · (j−1))(i · j)
+

(i j j+1 j−1)(i j j−1 j+1)

((j+1) · (j−1))2

]

.
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4. Conclusions

We have shown how triple cuts correctly reproduce the cut-constructible part of the n-

gluon one-loop MHV scattering amplitudes in pure Yang-Mills, both for the adjacent and

for the general case. An interesting observation of this calculation is that we did not have

to make use of two particle cuts. Of course, our result is consistent with two particle cuts

since it agrees with the earlier calculation of the same class of amplitudes in [2] and [13]

using conventional unitarity and MHV diagram, respectively. This is in line with similar

observations made in [16] and [24] where certain classes of amplitudes where obtained from

triple cuts (and quadruple cuts) alone. The particular examples are the Next-to-MHV

one-loop amplitudes with adjacent negative helicity gluons considered in [16] and all four-

point one-loop amplitudes in pure Yang-Mills considered in [24]. Obviously, it would be

interesting to investigate these observations further and understand whether this works for

general amplitudes.

A first, important step would be to gain knowledge of the one-loop n-gluon next-to

maximally helicity violating amplitudes (NMHV), that is amplitudes with three negative

helicities. While the purely gluonic 6- , 7- and n-point one-loop N = 4 NMHV amplitudes

were computed in [2, 15, 30, 31] using generalised unitarity, 6- and n-point one-loop ampli-

tudes involving adjoint fermions and scalars in N = 4 gauge theory were found in [32, 33].

A different approach was employed in [34] for the 7-gluon amplitudes in N = 4 NMHV,

whereby the authors managed to exploit the holomorphic anomaly of unitarity cuts to

reconstruct the amplitude by evaluating the action of a certain differential operator on

the cut. Furthermore, the holomorphic anomaly was also utilised in [35] to compute the

6-point one-loop N = 1 split-helicity NMHV amplitude, while the remaining 6-point one-

loop N = 1 NMHV amplitudes were calculated in [36]. Generalised unitarity provided

the n-gluon one-loop N = 1 NMHV amplitude in [16] for the case that the three negative

helicity gluons are adjacent. This latter amplitude has been calculated in pure Yang-Mills

in [37] using an iterative approach. Finally, the coefficients of bubble and triangle integral

functions for non-supersymmetric six-gluon amplitudes were computed in [38].

Let us conclude with some remarks on preliminary investigations of the NMHV case.

We have started to investigate a particular class of non-supersymmetric NMHV amplitudes,

namely An
scalar(1

+, . . . , i−, j−, . . . , k−, . . . n+), i.e. amplitudes where the i-th and j-th neg-

ative helicity gluons are adjacent and the k-th one is in an arbitrary position. In order

to tackle the problem, we start by identifying all possible triple cuts contributing to the

amplitude, which may be seen in figure 4. The triple cut drawn in figure 4a poses no new

problems (we found structures similar to those appearing in the calculation of the MHV

amplitude we investigated in this letter). For the remaining triple cuts in figure 4b, 4c and

4d an additional difficulty arises, since the tree amplitudes appearing in the triple cut (1.2)

may be NMHV. Thus, we cannot employ the Parke-Taylor formula for the standard MHV

tree amplitudes. In [39], it was shown how tree amplitudes in Yang-Mills theories may be

derived by sewing together MHV vertices, suitably continued off-shell (CSW prescription),

and connected by scalar bosonic propagators 1/p2 (see [40] for a review). This novel dia-

grammatic approach stemmed from an insight which relates the perturbative expansion of

– 12 –
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Figure 4: The triple-cut diagrams contributing to the n-gluon one-loop NMHV amplitude.

N = 4 super Yang-Mills theory to D-instanton expansion in the topological B model on

super twistor space CP 3|4 [41]. By applying manipulations similar to those used in this

letter, we mostly obtain three-tensor triangle integrals although some more complicated

three-tensor pentagon integrals still appear.9 In a straightforward application of the CSW

rules spurious poles arise and it is necessary to use improved formulas for the NMHV tree

amplitudes [43] that have only physical poles. We plan to study this case in more detail in

the future.
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A. Tensor integrals

In this appendix we define the one-loop integrals10 encountered in this paper, which were

used in performing the PV reductions. Furthermore, we present formulas for the PV

reductions of all tensor bubble, triangle and box integrals appearing in our letter. The

more complicated three-tensor triangle integral is dealt with separately in appendix B.

A.1 Bubble integrals

A general bubble integral is defined by

I2[P (ℓµ)] = −i(4π)2
∫

d4ℓ

(2π)4−2ǫ

P (ℓµ)

ℓ2(ℓ − K)2
, (A.1)

where K is the total outgoing momentum at one side of the bubble and P (ℓµ) is some

polynomial of the loop momentum ℓµ. Evaluation of the scalar bubble integral yields

I2[1] = rΓ
(−K2)−ǫ

ǫ(1 − 2ǫ)
= rΓ

[(

1

ǫ
+ 2 − ln(−K2)

)

+ O(ǫ)

]

, (A.2)

where

rΓ =
Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
. (A.3)

Thus, we see that the difference of two scalar bubbles gives rise to (2.9) to O(ǫ0).

The PV reductions of the linear and two-tensor bubble integrals are given by

I2[ℓ
µ] = −

1

2
I2[1]K

µ , (A.4)

I2[ℓ
µℓν ] = I2[1]

(

1

3
KµKν −

1

12
K2ηµν

)

. (A.5)

A.2 Triangle integrals

A general tensor triangle integral is defined by

I3[P (ℓµ)] = i(4π)2
∫

d4ℓ

(2π)4−2ǫ

P (ℓµ)

ℓ2(ℓ − K1)2(ℓ + K3)2
, (A.6)

where the Ki are sums of the momenta ki of the external gluons at each vertex. We find

that the linear and two-tensor two-mass triangle integrals, with momentum assignments

as in figure 1, are given by

I3[ℓ
µ
2 ] = −T (1)(m,P,Q)Pµ + . . . , (A.7)

I3[ℓ
µ
2 ℓν

2 ] =
1

2
T (1)(m,P,Q)PµP ν −

1

2
P 2T (2)(m,P,Q) (Pµmν + P νmµ) + . . . . (A.8)

The triangle functions T (r)(m,P,Q) have been defined in eq. (2.9) and in the formulas

above only those terms have been written down which survive after inserting the tensor

integrals in the explicit cut expressions.

10We follow closely the conventions of [2].
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A.3 Box integrals

A general tensor box integral is defined as

I4[P (ℓµ)] = −i(4π)2
∫

d4ℓ

(2π)4−2ǫ

P (ℓµ)

ℓ2(ℓ − K1)2(p − K1 − K2)2(ℓ + K4)2
(A.9)

For the linear box integral with momentum assignments as in figure 3 we find

I4[ℓ
µ
1 ] =

(m1 · m2)P 2I4[1] − (m1 · P ) [I3 + 2(m2 · P ) I4[1]]

2 [(m1 · m2)P 2 − 2 (m2 · P )(m1 · P )]
Pµ (A.10)

+
(m1 ·m2)P

2[I3−(m2 ·P )I4[1] ]+(m1 ·P )(m2 ·P )[2 I4[1](m2 ·P )−I3]

2(m1 · m2) [(m1 · m2)P 2 − 2 (m2 · P )(m1 · P )]
mµ

1 + . . . ,

where we are omitting a term proportional to mµ
2 term since it drops out when inserted in

(3.19). We refer the interested reader to the appendices I and II of [2] for a more complete

discussion of bubble, triangle and box integrals.

B. Passarino-Veltman reduction

In this section we carry out the PV reduction of the three-index tensor two-mass triangle

integral, which enters in (2.5) and (3.15)–(3.17) and whose momentum assignments can be

found in figure 1:

Iµνρ(m,P,Q) =

∫

d4ℓ2
ℓµ
2 ℓν

2 ℓρ
2

ℓ2
1 ℓ2

2 ℓ2
3

. (B.1)

The integral (B.1) may be decomposed as

Iµνρ = a(PµP νP ρ) + b(Pµmνmρ + P νmµmρ + P ρmνmµ) + (B.2)

c(PµP νmρ + PµP ρmν + P νP ρmµ) + d(Pµηρν + P νηµρ + P ρηµν) +

e(mµηνρ + mνηµρ + mρηνµ) + f(mµmνmρ).

Taking contractions with all possible momenta then yields

• PµPνPρ

I1 =

∫

(ℓ2 · P )3

ℓ2
1 ℓ2

2 ℓ2
3

= aP 8 + 3b[P 2(m · P )2] + 3c[(m · P )P 4] + (B.3)

+ 3dP 4 + 3e[(m · P )P 2] + f(m · P )3 ,

• Pµmνmρ

I2 =

∫

(ℓ2 · P )(m · ℓ2)
2

ℓ2
1 ℓ2

2 ℓ2
3

= a[P 2(m · P )2] + c(m · P )3 + 2d(m · P )2 , (B.4)

• PµPνmρ

I3 =

∫

(m · ℓ2)(ℓ2 · P )2

ℓ2
1 ℓ2

2 ℓ2
3

= a[(m · P )P 4] + b(m · P )3 + 2c[P 2(m · P )2] + (B.5)

3d[P 2(m · P )] + 2e(m · P )2 ,
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• Pµηνρ

I4 =

∫

(P · ℓ2)

ℓ2
1 ℓ2

3

= aP 4 + 2b[(m · P )2] + 3c[P 2(m · P )] + (B.6)

6dP 2 + 6e(m · P ) ,

• mµηνρ

I5 =

∫

(ℓ2 · m)

ℓ2
1 ℓ2

3

= a[(m · P )P 2] + 2c(m · P )2 + 6d(m · P ) , (B.7)

• mµmνmρ

I6 =

∫

(ℓ2 · m)3

ℓ2
1 ℓ2

2 ℓ2
3

= a(m · P )3 . (B.8)

The integrals take the following values:

I1 = −
1

2
(m · P )2I2(Q

2) −
1

8
P 2I3 −

1

6
(P · Q)2I2(Q

2) +
1

24
Q2P 2I2(Q

2) (B.9)

−
1

2
(m · P )(P · Q)I2(Q

2) +
1

4
(m · P )I2(Q

2)

+
1

8
P 2(P · Q)I2(Q

2) −
1

8
P 4I2(Q

2) ,

I2 =−
1

6
(m · Q)2I2(Q

2) −
1

8
P 2(m · Q)I2(Q

2) −
1

8
P 2(m · P )I2(P

2) ,

I3 =
1

2
(m · P )2I2(Q

2) +
1

6
(P · Q)2I2(Q

2) +
1

2
(m · P )(P · Q)I2(Q

2)

−
1

24
Q2P 2I2(Q

2) −
1

6
P 4I2(P

2) +
1

24
P 4I2(P

2) ,

I4 = (m · P )I2(Q
2) +

1

2
(P · Q)I2(Q

2) ,

I5 =
1

2
(m · Q)I2(Q

2) ,

I6 =
1

6
(m · Q)2I2(Q

2) −
1

6
(m · P )2I2(P

2) ,

Finally, using Mathematica to carry out the algebraic manipulations, we retrieve the coef-

ficients of the expansion (B.2)

a =
I2(Q

2) − I2(P
2)

3Q2 − 3P 2
, (B.10)

b =
P 4(I2(P

2 − I2(Q
2)

3(P 2 − Q2)3
,

c =
P 2(I2(Q

2) − I2(P
2))

6(P 2 − Q2)2
,

d =
Q2I2(Q

2) − P 2I2(P
2)

12(P 2 − Q2)
,

e =
(Q4 − 2P 2Q2)I2(Q

2) + P 4I2(P
2)

12(P 2 − Q2)2
,
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where we chose not to write the f coefficient as one can easily check that the mµmνmρ

term vanishes once inserted into the appropriate Dirac trace formulas appearing in our

calculations. Incidentally, the f coefficient is the only place where the I3 scalar triangle

function appears.

Thus, (B.1) takes the following form:

∫

d4ℓ2
ℓµ
2 ℓν

2 ℓρ
2

ℓ2
1 ℓ2

2 ℓ2
3

=
I2(Q

2) − I2(P
2)

3Q2 − 3P 2
(PµP νP ρ) +

P 4(I2(P
2) − I2(Q

2))

3(P 2 − Q2)3
(Pµmνmρ) (B.11)

+
P 2(I2(Q

2) − I2(P
2))

6(P 2 − Q2)2
(PµP νmρ) +

Q2I2(Q
2) − P 2I2(P

2)

12(P 2 − Q2)
(Pµηνρ)

+
(Q4 − 2P 2Q2)I2(Q

2) + P 4I2(P
2)

12(P 2 − Q2)2
(mµηνρ) .

C. Spinor identities

We list here some spinor identities. The Schouten identity is given by

〈i j〉〈k l〉 = 〈i l〉〈k j〉 + 〈i k〉〈j l〉 . (C.1)

Other useful identities are

[i j] 〈j i〉 = tr+(6ki 6kj) = 2(ki · kj) , (C.2)

[i j] 〈j l〉[l m]〈m i〉 = tr+(6ki 6kj 6kl 6km) . (C.3)

In dealing with Dirac traces, we made use of the following identities:

tr+(6ki 6kj 6kl 6km) = tr+(6km 6kl 6kj 6ki) = tr+(6kl 6km 6ki 6kj) , (C.4)

tr+(6ki 6kj 6kl 6km) = 4(ki · kj)(kl · km) − tr+(6kj 6ki 6kl 6km) . (C.5)
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